# Travelling Salesman Problem using Dynamic Programming

Hello Everyone, I working on a web development project and Trying to solve the code for travelling salesman problem using by dynamic programming. The problem statement In travelling salesman problem algorithm, we take a subset N of the required cities that need to be visited, the distance among the cities dist, and starting city s as inputs. Each city is identified by a unique city id which we say like 1,2,3,4,5………n. I have taken this code reference from this source. Can anyone explain me with the help of this code, how travelling salesman program works? or give another example?

Java Code with Dynamic Programming Approach

``````import java.util.List;
import java.util.ArrayList;
import java.util.Collections;

public class Main {

private final int N, start;
private final double[][] distance;
private List<Integer> tour = new ArrayList<>();
private double minTourCost = Double.POSITIVE_INFINITY;
private boolean ranSolver = false;

public Main(double[][] distance) {
this(0, distance);
}

public Main(int start, double[][] distance) {
N = distance.length;

if (N <= 2) throw new IllegalStateException("N <= 2 not yet supported.");
if (N != distance[0].length) throw new IllegalStateException("Matrix must be square (n x n)");
if (start < 0 || start >= N) throw new IllegalArgumentException("Invalid start node.");

this.start = start;
this.distance = distance;
}

// Returns the optimal tour for the traveling salesman problem.
public List<Integer> getTour() {
if (!ranSolver) solve();
}

// Returns the minimal tour cost.
public double getTourCost() {
if (!ranSolver) solve();
return minTourCost;
}

// Solves the traveling salesman problem and caches solution.
public void solve() {

if (ranSolver) return;

final int END_STATE = (1 << N) - 1;
Double[][] memo = new Double[N][1 << N];

// Add all outgoing edges from the starting node to memo table.
for (int end = 0; end < N; end++) {
if (end == start) continue;
memo[end][(1 << start) | (1 << end)] = distance[start][end];
}

for (int r = 3; r <= N; r++) {
for (int subset : combinations(r, N)) {
if (notIn(start, subset)) continue;
for (int next = 0; next < N; next++) {
if (next == start || notIn(next, subset)) continue;
int subsetWithoutNext = subset ^ (1 << next);
double minDist = Double.POSITIVE_INFINITY;
for (int end = 0; end < N; end++) {
if (end == start || end == next || notIn(end, subset)) continue;
double newDistance = memo[end][subsetWithoutNext] + distance[end][next];
if (newDistance < minDist) {
minDist = newDistance;
}
}
memo[next][subset] = minDist;
}
}
}

// Connect tour back to starting node and minimize cost.
for (int i = 0; i < N; i++) {
if (i == start) continue;
double tourCost = memo[i][END_STATE] + distance[i][start];
if (tourCost < minTourCost) {
minTourCost = tourCost;
}
}

int lastIndex = start;
int state = END_STATE;

// Reconstruct TSP path from memo table.
for (int i = 1; i < N; i++) {

int index = -1;
for (int j = 0; j < N; j++) {
if (j == start || notIn(j, state)) continue;
if (index == -1) index = j;
double prevDist = memo[index][state] + distance[index][lastIndex];
double newDist  = memo[j][state] + distance[j][lastIndex];
if (newDist < prevDist) {
index = j;
}
}

state = state ^ (1 << index);
lastIndex = index;
}

Collections.reverse(tour);

ranSolver = true;
}

private static boolean notIn(int elem, int subset) {
return ((1 << elem) & subset) == 0;
}

// This method generates all bit sets of size n where r bits
// are set to one. The result is returned as a list of integer masks.
public static List<Integer> combinations(int r, int n) {
List<Integer> subsets = new ArrayList<>();
combinations(0, 0, r, n, subsets);
return subsets;
}

// To find all the combinations of size r we need to recurse until we have
// selected r elements (aka r = 0), otherwise if r != 0 then we still need to select
// an element which is found after the position of our last selected element
private static void combinations(int set, int at, int r, int n, List<Integer> subsets) {

// Return early if there are more elements left to select than what is available.
int elementsLeftToPick = n - at;
if (elementsLeftToPick < r) return;

// We selected 'r' elements so we found a valid subset!
if (r == 0) {
} else {
for (int i = at; i < n; i++) {
// Try including this element
set |= 1 << i;

combinations(set, i + 1, r - 1, n, subsets);

// Backtrack and try the instance where we did not include this element
set &= ~(1 << i);
}
}
}

public static void main(String[] args) {
int n = 6;
double[][] distanceMatrix = new double[n][n];
for (double[] row : distanceMatrix) java.util.Arrays.fill(row, 10000);
distanceMatrix[5][0] = 10;
distanceMatrix[1][5] = 12;
distanceMatrix[4][1] = 2;
distanceMatrix[2][4] = 4;
distanceMatrix[3][2] = 6;
distanceMatrix[0][3] = 8;

int startNode = 0;
Main solver = new Main(startNode, distanceMatrix);

// Prints: [0, 3, 2, 4, 1, 5, 0]
System.out.println("Tour: " + solver.getTour());

// Print: 42.0
System.out.println("Tour cost: " + solver.getTourCost());
}
}
``````

It is unclear to me how this question is related to the wM forums. Am I missing something?

1 Like

This topic was automatically closed 90 days after the last reply. New replies are no longer allowed.